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Wyoming’s coal industry contributes 1.2 billion dollars annually to State revenues.
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Modified from Surdam, R.C., 2008, Wyoming energy development in the context of the global economy:
Wyoming State Geological Survey Challenges in Geologic Resource Development No. 6, 38 p.
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Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p.




GEOLOGIC MAFP AND OIL AND GAS FIELDS OF THE ROCK SPRINGS UPLIFT AREA,
SWEETWATER COUNTY, SOUTHWESTERN WYOMING
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Surdam, R.C. & Jiao, Z., 2007, The Rock Springs Uplift: An outstanding geological CO, sequestration
site in southwest Wyoming: Wyoming State Geological Survey Challenges in Geologic Resource
Development No. 2, 31 p.




Background — Past Research

IDAHO

Rl WSGS, UW, State, and DOE-
funded research identified

two high-capacity sites

In southwest Wyoming:

Rock Springs Uplift & Moxa Arch
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Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon
management combining geological CO, sequestration, displaced fluid production, and water treatment:
Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p.




Photo by Meg Ewald, WSGS.







Rock Springs Uplift: an outstanding
geological CO, sequestration site in
southwestern Wyoming

Thick saline aquifer sequence overlain by thick
sealing lithologies.

Doubly-plunging anticline characterized by more
than 10,000 ft of closed structural relief.

Huge area (50 x 35 mile).

Required reservoir conditions; including, but not
limited to fluid chemistry, porosity (pore space),
fluid-flow characteristics, temperature and pressure
(i.e., regional burial history).




Jim Bridger Power Plant (2200 MW)
Largest CO, emitting plant in Wyoming (18 Mt/year)

Jim.Brideser Power Plant, ph

| T = 3.




Rock Springs Uplift, Wyoming
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Surdam, R.C. & Jiao, Z., 2007, The Rock Springs Uplift: An outstanding geological CO, sequestration
site in southwest Wyoming: Wyoming State Geological Survey Challenges in Geologic Resource
Development No. 2, 31 p.




(Cretaceous
shales)

Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon
management combining geological CO, sequestration, displaced fluid production, and water treatment:
Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p.




CO, Injection Simulation Results from FEHM for the Weber Sandstone, Rock Springs Uplift
Injection Interval 700 ft, Porosity 10%, Relative Permeability 1 - 2 md,
Injection Rate 17.61x27 kg/s, 15 Mt/year, 9 Injection Wells
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Nine point injector example

Jim Bridger
Power Plant
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Geological CO, Sequestration, after S0 Years Injection, Weber Sandstone
Rock Springs Uplift, 9 Injection Wells
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Change in pressure after 50 years of CO; injection, 15 mt/y, Weber Sandstone, RSU
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2009, An integrated strategy for
carbon management combining
geological CO, sequestration,
displaced fluid production, and
water treatment: Wyoming
State Geological Survey
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Injected CO, versus Scale:
fluid leaving the domain 750 Mt of CO2 displaces

~1 cubic kilometer.
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Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon
management combining geological CO, sequestration, displaced fluid production, and water treatment:
Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p.







Sea water Pre-treatment Saline aquifer fluid
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Wolery, T.J., Aines, R.D., Hao, Y., Bourcier, W., Wolfe, T., and Haussman, C., 2008,
Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY08.
Lawrence Livermore National Laboratory Report LLNL-TR-420857, 44 p.



One Year Average Water Production

Amount of CO; Amount of Water Treatment Cost 80% Recovery Value
Sequestrated Produced
Million ton Million ton Acre-foot 5450/Acre-ft  $600/Acre-ft Million ton Acre-foot Agricultural, Residential,
5240/Acre-ft  51270/Acre-ft
15 9.2 7474 53,363,120 54,484,160 74 5,979 51,434,931 57,593,178
10 6.0 4.8M1 52,191,860 52,922,480 4.8 3,897 $935,194 54,948,733
5 2.8 2,268 $1,020,600 $1,360,800 2.2 1,814 $435,456 $2,304,288

75 Year Water Production

Amount of CO, Amount of Water

Treatment Cost 80% Recovery Value
Sequestrated Produced
Million ton Million ton Acre-foot 5450/Acre-ft  $600/Acre-ft Million ton Acre-foot Agricultural Residential,

$240/Acre-ft  $1270/Acre-ft
750 Mt 692 560,520 5$252,234,000 $5336,312,000 554 448 416 5107,619,840 5569,488,320

(15 Mt/year)
500 Mt 451 365,310 5164,389,500 5219,186,000 361 292,248 570,139,520 5371,154,960

(10 Mt/year)
250 Mt 210 170,100 576,545,000 5102,060,000 168 136,080 $32,659,200 $172,821,600

(5 Mt/year)




Conclusions

« The most critical problem with commercial scale
geological CO, sequestration iIs management of
displaced fluids. To solve this problem, the
Wyoming State Geological Survey proposes a
strategy that includes integration of fluid
production/water treatment with injection of CO.,.

 The greatest uncertainty in numerically
simulating CO, sequestration processes is
characterizing geological heterogeneity in 3
dimensions.




The WY-CUSP Partnership

SER — WSGS — UW is conducting one of the DOE
sequestration characterization studies on the Rock
Springs Uplift, Wyoming.

1) to design the water treatment facility required to
solve the displacement fluid problem, and

2) to significantly reduce the numerical simulation
uncertainty by documenting the geological
heterogeneity in 3-D.
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Project Structure

DOE/NETL
$4.975 M

m *UNIVERSITV OF WYOMING




Basic elements of the Rock Springs Uplift
characterization project are the acquisition
of a 3D seismic survey and a stratigraphic

-~ test at the selected geological CO2

seguestration site.
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Future Directions

Wyoming Governor Freudenthal’s letter to the 60t
(2010) Legislature:

“Other . . . recommendations in the University of Wyoming budget
include $45 million for continuation and acceleration of carbon
sequestration research . . .”

With this and other funds, UW hopes to develop a commercial-
scale CO, sequestration site by 2016 that will be able to inject
>>1 million tons of CO,/year

m *UNIVERSITV OF WYOMING
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LaBarge
Wellfield
(1 6 wells)

aAL ¥ 00091

Produced Gas
720 MMSCF/d
13.8 Mt/yr

modified from N.S. Huang, et. al., 2007
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Geologic Carbon Sequestration
In the Powder River Basin

Powder

|  Ronald C. Surdam
@ State Geologist ~




Typical Wyoming Laramide Basin

USDW Aquifer

Required fluid flow modeling in Laramide basins
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Powder River Basin
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CO, Sequestration Potential in Depleted Gas Fields,
Powder River Basin, Wyoming

Field Formation qu C Lol
(million tons)
Amos Draw Complex Muddy 13.8
Kitty Muddy 18.8
Hartzog Draw Shannon 18.5
Buck Draw North Dakota 15.6
Powell Frontier 38.0
Spearhead Ranch Frontier 6.9
Sand Dunes Muddy 12.4
House Creek Sussex 8.2
Scott Parkman 5.4
Total = 137.6 million tons

Preliminary results based on volumetric calculations using USGS protocol.
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Enhanced Oil Recovery
Opportunities in Powder River
Basin - Minnelusa

 Approximately 150 candidate Minnelusa oll
flelds. Many have gone through the
secondary recovery waterflood stage and
appear ideal for CO, miscible flooding

« 1.2 Billion barrels of Original Oil in Place
(O0IP), CO, flooding adding 10% additional

production, 120 million barrels @ $65/barrel
= $7.8 Billion

 Final sequestration available in field after
flooding complete



CO, Flood Enhanced Oil Recovery
Returns and CO, Requirements

Recovery 10% OOIP (barrels) 120 million barrels
Value @ $65/barrel $7.8 billion
CO, required @ 10 mcf/barrel 1.2 billion mcf (1.2 TCF)

Tonnes of CO, needed

62 million tonnes
(19.3 mcf/tonne)

CO, Cost @ $2/mcf $2.4 billion




Coal Mine Coal > Liquids, Gases, Electrons CO, Injection
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U.S. Energy Imports
2006

Crude Oil Natural Gas Coal Total
Rank Country Production Quadrillion Production Quadrillion Production Quadrillion Quadrillion
or State Million Btu Trillion Btu million Btu Btu
of Origin Bbllyear Cubic ft/lyear tons/year
1 Wyoming 52.93 0.28 1.75 1.77 446.74 7.96 10.01
2 Canada 648.97 3.41 3.59 3.63 1.49 0.04 7.08
3 West Virginia 1.83 0.01 0.22 0.22 152.37 3.91 414
4 Mexico 575.61 3.02 0.01 0.01 0.00 0.00 3.04
5 Saudi Arabia 519.40 2.73 0.00 0.00 0.00 0.00 2.73
6 Venezuela 416.83 219 0.00 0.00 3.07 0.08 227
7 Nigeria 378.51 1.99 0.06 0.06 0.00 0.00 2.05
8 Alaska 270.47 1.42 0.42 0.43 0.00 0.00 1.85
9 Iraq 201.85 1.06 0.00 0.00 0.00 0.00 1.06
10 Angola 187.25 0.98 0.00 0.00 0.00 0.00 0.98
Total 3,253.61 17.08 6.05 6.12 603.67 11.99 39.19

Note: Total may not equal sum of components because of independent rounding.
Coal imports include coal to Puerto Rico and the Virgin Islands.
Source: Bureau of the Census, U.S. Department of Commerce, Monthly Report IM 145.
EIA, U.S. Natural Gas Imports by Country
EIA, U.S. Crude oil Net Imports by Country
ElA, Gross Heat Content of Coal Production, Most Recent Annual Estimates, 1980-2006




Why is geological CO, sequestration so important?
Implications of Federal Legislation and EPA rule making!
Consider the following:

April 2007 — In Massachusetts v. EPA, Supreme Court finds that
EPA does have authority to regulate GHGs under the Clean Air Act.

GHGs fall within the Act’s definition of “air pollutant.”

Supreme Court ruled EPA would have to determine if these

pollutants pose a danger to public health and welfare before EPA
could regulate them.

December 8, 2009 — EPA declares there is compelling scientific
evidence that global warming from green-house gases emitted from
cars, power plants and factories endangers American’s health.

EPA’s view is once an air pollutant is subject to an emission
limitation or control requirement under any part of the Act, that
pollutant automatically becomes subject to NSR.

New and modified plants must have “best available control
technology” (BACT) for GHG emissions.



EPA likely will begin by suggesting efficiency
Improvements, but environmental groups and
some state/federal permitting authorities will
argue that BACT should be more stringent:

e Fuel switching?
e CCS?
 IGCC?



EPA is pursuing the development of new source performance
standards (NSPS) and existing-source guidelines for CO,
and other GHG emissions from power plants.

Work on these rules will accelerate in 2010.

W-M/K-B would establish performance standards for new coal-fired power
plants.

50% reduction for new plants started after 2008, subject to CCS availability,
but no later than 2020.

65% reduction for new plants started after 2020.

Geological CO, sequestration must work if these reduction standards are to
be met by 2020.

W-M/K-B and EPA have common goals; survival of up-stream and down-
stream coal to electrons/chemical industries depend on geological CO,
sequestration.

Background material: Joseph C. Stanko
Scott J. Stone
Hunton & Williams LLP



